Efficient Computation of Generalized Ising Polynomials on Graphs with Fixed Clique-Width

نویسندگان

  • Tomer Kotek
  • Johann A. Makowsky
چکیده

Graph polynomials which are definable in Monadic Second Order Logic (MSOL) on the vocabulary of graphs are Fixed-Parameter Tractable (FPT) with respect to clique-width. In contrast, graph polynomials which are definable in MSOL on the vocabulary of hypergraphs are fixed-parameter tractable with respect to tree-width, but not necessarily with respect to clique-width. No algorithmic meta-theorem is known for the computation of graph polynomials definable in MSOL on the vocabulary of hypergraphs with respect to clique-width. We define an infinite class of such graph polynomials extending the class of graph polynomials definable in MSOL on the vocabulary of graphs and prove that they are Fixed-Parameter Polynomial Time (FPPT) computable, i.e. that they can be computed in time O(n), where n is the number of vertices and k is the clique-width.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Graph Polynomials on Graphs of Bounded Clique-Width

We discuss the complexity of computing various graph polynomials of graphs of fixed clique-width. We show that the chromatic polynomial, the matching polynomial and the two-variable interlace polynomial of a graph G of clique-width at most k with n vertices can be computed in time O(n), where f(k) ≤ 3 for the inerlace polynomial, f(k) ≤ 2k + 1 for the matching polynomial and f(k) ≤ 3 · 2 for th...

متن کامل

The enumeration of vertex induced subgraphs with respect to the number of components

Inspired by the study of community structure in connection networks, we introduce the graph polynomial Q (G;x, y), the bivariate generating function which counts the number of connected components in induced subgraphs. We give a recursive definition of Q (G; x, y) using vertex deletion, vertex contraction and deletion of a vertex together with its neighborhood and prove a universality property....

متن کامل

Computing the Clique-Width of Large Path Powers in Linear Time via a New Characterisation of Clique-Width

Clique-width is one of the most important graph parameters, as many NP-hard graph problems are solvable in linear time on graphs of bounded clique-width. Unfortunately the computation of clique-width is among the hardest problems. In fact we do not know of any other algorithm than brute force for the exact computation of clique-width on any nontrivial large graph class. Another difficulty about...

متن کامل

Exploiting Restricted Linear Structure to Cope with the Hardness of Clique-Width

Clique-width is an important graph parameter whose computation is NP-hard. In fact we do not know of any other algorithm than brute force for the exact computation of clique-width on any non-trivial graph class. Results so far indicate that proper interval graphs constitute the first interesting graph class on which we might have hope to compute clique-width, or at least its linear variant line...

متن کامل

Clique-Width and the Speed of Hereditary Properties

In this paper, we study the relationship between the number of n-vertex graphs in a hereditary class X , also known as the speed of the class X , and boundedness of the clique-width in this class. We show that if the speed of X is faster than n!cn for any c, then the clique-width of graphs in X is unbounded, while if the speed does not exceed the Bell number Bn, then the clique-width is bounded...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015